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We have considered the two-spin interaction spherical spin-glass model with asymmetric(dmunulsg
constants Besides the usual interactions between spins and bonds and between the spins and a thermostat with
temperaturdl , there is also an additional factor: the bonds are not assumed raamgoiori but interact with
some other thermostat at the temperaftye We show that when the bonds are frozen with respect to the spins
a first order phase transition to a spin-glass phase occurs, and the temperature of this transition tends to zero if
T, is large. Our analytical results show that a spin-glass phase can exist in mean-field models with nonrelax-
ational dynamics[S1063-651X98)51310-4

PACS numbegps): 05.50+q, 64.70.Pf, 75.10.Nr

Investigation of nonequilibrium stationary states for sys-spin-glass system. The model was introduced9 where
tems without detailed balance is an important problem. Syswas shown that random frozen uncorrelated asymmetric
tems of this type are widely used in nonequilibrium thermo-Gaussian bond&ven when the asymmetry is small but ge-
dynamics [1,2], biology and biophysics[3], theory of nerig totally break finite-temperature spin-glass transition.
artificial neural network$4], etc.[5]. The second important step in this direction was done @j.

If detailed balancgor potential conditionsholds, then Here multispin interaction spherical spin-glass was consid-
the stationary state of a macroscopic system can be describeded, and by numerical methods was shown that indeed the
by the Gibbs distributioitimaybe with some generalizations Langevin dynamics which is started from the typical initial
which is independenfrom details of the dynamicks,7]. In conditions, tends to the paramagnetic state for any nonzero
the opposite case such a universal and simple distributiotemperature. But if the initial conditions are chosen in some
does not exist, and the situation is strongly dependent on th&pecial way, then finite-temperature spin-glass phase transi-
details of dynamics and the concrete form of detailed balancton to a metastable state is possible. Cugliandlal. [10]
violation. In general, we have in a stationary state withoutproposed that this difference between two-spin and multispin
detailed balance only time-translation invariaf6¢e/]: aver- interaction models arises due to the different structure of the
age multitime quantitie€(t4, ... t,) (time ordering is as- phase spaces when detailed balance h@lds the bonds are
sumedt,=---=t,) depend only on the corresponding time symmetrig. Indeed in the two-spin interaction model the
differencest,—t,, k<I [for example,C(t)=constC(t;,t;)  spin-glass phase is marginally stable, hence there is a possi-
=C(t;—ty), .. .] bility to destroy the phase transition. In contrast, the multi-

In the present paper we consider the case when the depin interaction model has low-lying totally stable states
tailed balance condition is violated by nonconservative[11,12,14.
forces of some specific type: the mean-field spherical spin- In our model the coupling constants interact with the
glass model with asymmetric bondsoupling constanjs  spins and with a thermal bath at the temperafiye Gener-
This type of nonconservative forces was inspired by applicaally speaking, can b&;# T, (=T). There are several rea-
tions in the theory of artificial neural network4], but it has  sons for introducing interactions of this type. A typical ex-
also some independent meaning as the model for a opeample of a two-temperature system is a nonequilibrium
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electron-proton plasma. Due to the large difference between - [t — -
electron and proton masses energy transfer between the two (7d;+ f)ff(t)z,uf dte™*VC(t,t)o(t) + (1),
components can be neglected in some range of times. Pro- o

tons and electrons then go to equilibrium independently and
can have different temperatures. In general, a nonequilibrium
many-component system with slow energy transfer between ~ )
the components can, in some range of times, be described §y1€r€ @=2vB,/7y, p=2BB,/ 7y, p=p"vB,. Our pur-
introducing several temperatures. Another reason is that it igose,here IS to get equations for the correlation f“,”Ct'O”
well known that in some cases and in some sense neur&i(t! ):<U(t)‘{(t )) and the response functio®(t,t')
networks can be described by spin-glass models. The spiris{?e(t)/Bh(t")). Because the initial time——c [it is
and coupling constants are identified as neurons and synap€ of the limits of integration in Eq3)] the equilibrium
connections. But from a physiological point of view the non-€gimeis expected,

linear interactions with the neurons, and varying the synaptic , , , ,

connections with external environment is gvgry imgortgnt Cltt)=C(t-t"), Gtt)=6(t-t").
part of recognition and memory.

3
(7 p(t")=278(t—t')+p exp(— alt—t'NC(L,Y"),

It should be stressed again that the initial time tends to minus

At first, time spin-glass models with slow varying bonds; . . S : i
were considered by HorngB]. Here the model with sym- ![ir];'rg{);r:ﬁer the thermodynamic limit. The resulting equa

metric bonds is considered, and the slow motion of bonds is

used as some method for obtaining correct long-time limits ¢

from dynamical equations. Other methods for this purpose (7¢+ r)C(t)=,ﬂf

are also developed by Horner and co-workKerg|. -
The Langevin equations for the model have the following o _ o

form: +,uf0 dte *™UC(t+1)G(t), (4)

dte~*t=Vc(t—1)C(t)

T{?t(TiZ—I’O'i_')’B; Jij0j+77i(t)r (Ta_’_r)G(t):”fthfa(t*ti)C NG
X w | dte (t—=t)G(t). (5
0

)
(m(t)m;(t"))=278;8(t—t"), _ _ _
Here the difference of the timés-t’ is denoted by the same
730:di; = yByoioj— 2v B3dij + i (1), lettert. We also taker=1 as fixation of the units.
2) Further, we shall investigate theliabatic limit where the -
(mij (D) mirjr(t'))=2738 55, 6(t—1"), bonds are freezed with respect of the dynamics of spins

[6,13]. Indeed, in a qualitative manner we feel that any spin-
where the bondgsping interact with the thermal bath at glass order is possible only if bonds are frozen. This intu-
temperatureT; (T,), y=+/2/N is the standard norm-factor itively obvious fact has been rederived rigorously recently
for mean-field modelsy is the lagrangian factor for the for spin-glass systems with symmetric bor{@13]. Thus
spherical constraing;o?=N (here N is the number of the limit
sping, Jj; #J;;, and inZj is the potential energy for a cou-
pling constant.

If the bonds are symmetrig priori, then Eqs(1) and(2)

can be viewed as equations generated by the mean-fiel§ @ssumed: The b.onds are frozgn when the spins are _Ob'
Hamiltonian served. Actually, this assumption is the standard one for in-

vestigating the dynamics of usual spin-glass models when
the bonds are frozea priori. The different factor of our
H=y> Jjoio+v> I approach is the noninfinite temperatdrg, which is a physi-
b . cal mechanism for introducing a correlation between bonds.
Now if t—t’ is large enough, but still is much smaller
than; and all these times are much smaller than modulo of

r>t—t! (6)

It is the Langevin dynamics of the well-known two-spin
spherical model where thesymmetri¢ bonds interact with S . .
P sy 9 the initial time which— — o just afterN— o, we expect that

the thermal bath at the temperature [13]. In model con- . .
sidered in this paper asymmr:etric ar?d[ sy]mmetric bonds hav@e correlation function tends to the Edwards-Anderson order

the similar potential energy, and are subjected to the differParameter
ent thermal histories of the same thermostat.
The analysis of Eqg1) and(2) simplifies considerably in
the thermodynamic limit wheiN—oe, where the dynamics ; ; . ; ;
of the system can be described by a self-consistent equatiany the ad'abét;f— conditio6) .|n the last integral of Eq(A,')
involving a single spin only. This is achieved by introducing W& can takee™“'~1 by considering the relevant domain of
generating functional for the Langevin dynami{ds]. Be- the_lntegranon. In the first integral we have by interchanging
cause our interest is in the dynamics of the spins only, th¥ariable
integration by the bonds can be taken in the generating func- . 2
tional. 'ZLJ dTefatcpfl(t_)C(t_t_)Hﬁ_q- (7)
The resultingmean-fieldequations read 0 v

Clt—t'>0)=q.
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Similar analysis shows that the right-hand term in £. 1-q

can be neglected, and we have the simple solution T.= \/_C, (16)
¥

G(t)y=e " 8 . . . .
where ¢ is the positive solution of the equation
There are three relevant parameters in our madep3, 3;. 3
In this model we consider the phase diagram at the following 2¢+1=ng(1+ )" (17
conditions:v=T,,n=T/T; is fixed, and onlyB=1/T is

varying. Thus by Whenn—0 (in this limit we go to the particular case that

was studied in Ref.9]) we haveT—0,q.—~1/3.
N0 9) Further, we should discuss the stability properties of the
spin-glass solution. If detailed balance holds, then static
we go to the model that was considered%h [Furthermore, properties of a system is descri_bed by the Gi_bbs di_stribution,
if the bonds in Eqs(1,2) are symmetri@ priori then by Egs. therefo_re the_ _stablllty of solutions can be investigated by
(6,9 we go to the usual spherical mean-field mofteg]. analyzmg minimums of freg energ;(Notg: Because the
Heren plays the role of “replica number,” which in other Mean-field dynamical equations are obtainedNby= be-
approaches is introduced by the replica trickhis fact can ~ fore the initial time— —oo, some states that arise in dynam-
be derived directly fron{2): By limits (6,9) the bonds can be €S cannot be reflected in the purely static investigation by
considered as uncorrelated, quench, asymmetric Gaussigians of free energy. Thus, phase transitions that are pre-
variables. dicted by statics and dynamics can be differjeii#t, 14].) But
After this we have the following equation f@(t): for this concrete problem free energy is not necessary: Un-
stability of a solution is reflected by unstable behavior of
0 I purely dynamical quantities such as positive derivation of
(3+1)C(t)=nB%g*+ BZJ dtC(t+t)e™™. (100  correlation function or negative susceptibility. For example,

0 the famous(AT) line in usual spin-glass models can be re-
covered by this purely dynamical consideratjd2,17]. This
property does not connect with any specific character of
spin-glass systems but is supported by general theorems
about the stability of stochastic dynamical systégenerally

nB2QPr speaking without detailed balar)p[él,Z,‘/]. Because in our
()= 5—— +k, eV Py e tV-#°  (17)  case there are no such anomalies both for paramagnet and
spin-glass solutions we conclude that these phases are stable
(by chosen initial conditions The stability of paramagnet
The constantk, , k_,r should be fixed by the following for any temperature is more or less typical for first-order
standard conditionsC(0)=1 (the spherical constraint phase transitiongl1,14,13.
3C(t)]i—o=—1,k, =0 [the condition for monotonic decay =~ Now about another important problem: If we have two
of C(t)]. After some calculations we have far and different stable phases, then one should be only metastable

This equation holds for=0.
Equation(10) can be solved by the Laplace transforma-
tion. As the general solution we have

Edwards-Anderson parametgr and another one true stable. In usual models this question is
investigated by free energy: For the true stable phase the free

nB%q°r energy should be minimal. In principle, a generalized free

QZW, (12 energy can be introduced also in models without detailed
balance; the corresponding quantity is based on the so called

Kullbak entropy or relative entropyl,2]. For systems with

) 1 non-Gibbsian stationary distribution this function plays

r=\8 +W- (13 nearly the same role as usual free energy but, generally

speaking, has a strong dependence from initial conditions; in
the usual case, the detailed balance condition removes this
dependence. Unfortunately, we have not succeeded in calcu-
lation of this function for our model. So really we found only
4 =nB2g%Vp2(1—q)2+1. (14)  thatthe spin-glass phase occurs at least as a metastable state.
1-q On the other hand all stable spin-glass solutions, known by
other modelgsee, for exampl€,12,13,18), are true stable
Besides paramagnetic solutiar=0 there is also the first- wijth respect to paramagnet at least if temperature is low
order phase transition into a spin-glass phasé obvious  enough(of course it is not an argument for true stability in
that second-order transition is impossible in this ¢asée  our case but rather a hintOne of the scenarios for phase
transition point is defined as the first temperature wileh  transitions realized in such systems is as foll§a/3,15: At
predicts a non-zer@hon-paramagngsolution. The tempera- some temperature the nontrivial phagpin-glass in our
ture and the jumping of] at this transition point can be casé occurs at the first time, but true thermodynamical tran-

Finally we have the following equation fay:

obtained by the following equations: sition occurs at some lower temperature where free-energies
of the different solutions are the same. Maybe the scenario
p+1 for our phase transition is the same.

(19

qc:3¢+2‘ In the low-temperature limit we have for our solution
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T2 the spin-glass solution in the two-spin spherical model.
1=~ (18)  “Replicon” (or dangerous eigenvalue is~n (except ex-

actly the critical poink Thus, at least, some spin-glass states
We get this equation by the assumption thatdiis small. It ~ &r€ totally stable, and can “struggle” against the non-
should be noted that the characteristic time for the correlati@miltonian influence. . .
tion function relaxation ig,q;=1—q. Thus, critical slowing We con_5|der the spherical spin-glass model .W'th asym-
down occurs only neaf=0. metric pgmally annealgc_l bonds and _show that this last prop-

Now about the origin of this spin-glass phase. As weSty can mduce atransition to the spin-glass ph_ase.\Te’/r(p

mentioned above, behavior of a system without detailed palmPortant issues in this f|eId_shouId be cgn&dered in the
ance can be connected with behavior of the phase space téﬁure: The p_roblgms of proving true St"?‘b'“ty for the new
the same system when detailed balance h@lds the bonds phase, _con5|(_jer|r_19 partially asymmetric bonds, and, of
are symmetric in our cagelf we assume that such argu- course, investigating more realistic models.

ments can be used, then at this qualitative level the situation A. E. Allahverdyan thanks E. Mamasakhlisov for helpful
is clear: as was shown [13] a finiten breaks marginality of discussions.
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