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We have considered the two-spin interaction spherical spin-glass model with asymmetric bonds~coupling
constants!. Besides the usual interactions between spins and bonds and between the spins and a thermostat with
temperatureTs there is also an additional factor: the bonds are not assumed randoma priori but interact with
some other thermostat at the temperatureTJ . We show that when the bonds are frozen with respect to the spins
a first order phase transition to a spin-glass phase occurs, and the temperature of this transition tends to zero if
TJ is large. Our analytical results show that a spin-glass phase can exist in mean-field models with nonrelax-
ational dynamics.@S1063-651X~98!51310-4#

PACS number~s!: 05.50.1q, 64.70.Pf, 75.10.Nr
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Investigation of nonequilibrium stationary states for sy
tems without detailed balance is an important problem. S
tems of this type are widely used in nonequilibrium therm
dynamics @1,2#, biology and biophysics@3#, theory of
artificial neural networks@4#, etc. @5#.

If detailed balance~or potential conditions! holds, then
the stationary state of a macroscopic system can be desc
by the Gibbs distribution~maybe with some generalizations!,
which is independentfrom details of the dynamics@6,7#. In
the opposite case such a universal and simple distribu
does not exist, and the situation is strongly dependent on
details of dynamics and the concrete form of detailed bala
violation. In general, we have in a stationary state with
detailed balance only time-translation invariance@6,7#: aver-
age multitime quantitiesC(t1 , . . . ,tn) ~time ordering is as-
sumedt1>¯>tn) depend only on the corresponding tim
differencestk2t l , k, l @for example,C(t)5const,C(t1,t2)
5C(t12t2), . . . ]

In the present paper we consider the case when the
tailed balance condition is violated by nonconservat
forces of some specific type: the mean-field spherical s
glass model with asymmetric bonds~coupling constants!.
This type of nonconservative forces was inspired by appl
tions in the theory of artificial neural networks@4#, but it has
also some independent meaning as the model for a o
PRE 581063-651X/98/58~5!/5201~4!/$15.00
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spin-glass system. The model was introduced in@9#, where
was shown that random frozen uncorrelated asymme
Gaussian bonds~even when the asymmetry is small but g
neric! totally break finite-temperature spin-glass transitio
The second important step in this direction was done in@10#.
Here multispin interaction spherical spin-glass was cons
ered, and by numerical methods was shown that indeed
Langevin dynamics which is started from the typical initi
conditions, tends to the paramagnetic state for any nonz
temperature. But if the initial conditions are chosen in so
special way, then finite-temperature spin-glass phase tra
tion to a metastable state is possible. Cugliandoloet al. @10#
proposed that this difference between two-spin and multis
interaction models arises due to the different structure of
phase spaces when detailed balance holds~i.e., the bonds are
symmetric!. Indeed in the two-spin interaction model th
spin-glass phase is marginally stable, hence there is a p
bility to destroy the phase transition. In contrast, the mu
spin interaction model has low-lying totally stable stat
@11,12,14#.

In our model the coupling constants interact with t
spins and with a thermal bath at the temperatureTJ . Gener-
ally speaking, can beTJÞTs([T). There are several rea
sons for introducing interactions of this type. A typical e
ample of a two-temperature system is a nonequilibri
R5201 © 1998 The American Physical Society
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electron-proton plasma. Due to the large difference betw
electron and proton masses energy transfer between the
components can be neglected in some range of times.
tons and electrons then go to equilibrium independently
can have different temperatures. In general, a nonequilibr
many-component system with slow energy transfer betw
the components can, in some range of times, be describe
introducing several temperatures. Another reason is that
well known that in some cases and in some sense ne
networks can be described by spin-glass models. The s
and coupling constants are identified as neurons and syn
connections. But from a physiological point of view the no
linear interactions with the neurons, and varying the syna
connections with external environment is a very import
part of recognition and memory.

At first, time spin-glass models with slow varying bon
were considered by Horner@8#. Here the model with sym-
metric bonds is considered, and the slow motion of bond
used as some method for obtaining correct long-time lim
from dynamical equations. Other methods for this purp
are also developed by Horner and co-workers@12#.

The Langevin equations for the model have the followi
form:

t] ts i52rs i2gb(
j

Ji j s j1h i~ t !,

~1!
^h i~ t !h j~ t8!&52td i j d~ t2t8!,

tJ] tJi j 5gbJs is j22vbJJi j 1h i j ~ t !,
~2!

^h i j ~ t !h i 8 j 8~ t8!&52tJd i i 8d j j 8d~ t2t8!,

where the bonds~spins! interact with the thermal bath a
temperatureTJ (Ts), g5A2/N is the standard norm-facto
for mean-field models,r is the lagrangian factor for the
spherical constraint( is i

25N ~here N is the number of
spins!, Ji j ÞJji , andvJi j

2 is the potential energy for a cou
pling constant.

If the bonds are symmetrica priori, then Eqs.~1! and~2!
can be viewed as equations generated by the mean-
Hamiltonian

H5g(
i j

Ji j s is j1v(
i j

Ji j
2 .

It is the Langevin dynamics of the well-known two-sp
spherical model where the~symmetric! bonds interact with
the thermal bath at the temperatureTJ @13#. In model con-
sidered in this paper asymmetric and symmetric bonds h
the similar potential energy, and are subjected to the dif
ent thermal histories of the same thermostat.

The analysis of Eqs.~1! and~2! simplifies considerably in
the thermodynamic limit whenN→`, where the dynamics
of the system can be described by a self-consistent equa
involving a single spin only. This is achieved by introducin
generating functional for the Langevin dynamics@16#. Be-
cause our interest is in the dynamics of the spins only,
integration by the bonds can be taken in the generating fu
tional.

The resultingmean-fieldequations read
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~t] t1r !s~ t !5m̃E
2`

t

d t̄e2a~ t2 t̄ !C~ t̄ ,t !s~ t̄ !1h~ t !,

~3!
^h~ t !h~ t8!&52td~ t2t8!1m exp~2aut2t8u!C~ t,t8!,

where a52vbJ /tJ , m̃52bbJ /tJ , m5b2/vbJ . Our pur-
pose here is to get equations for the correlation funct
C(t,t8)5^s(t)s(t8)& and the response functionG(t,t8)
5^]s(t)/]bh(t8)&. Because the initial time→2` @it is
one of the limits of integration in Eq.~3!# the equilibrium
regimeis expected,

C~ t,t8!5C~ t2t8!, G~ t,t8!5G~ t2t8!.

It should be stressed again that the initial time tends to mi
infinity after the thermodynamic limit. The resulting equa
tions are

~t] t1r !C~ t !5m̃E
2`

t

d t̄e2a~ t2 t̄ !C~ t2 t̄ !C~ t̄ !

1mE
0

`

d t̄e2a~ t1 t̄ !C~ t1 t̄ !G~ t̄ !, ~4!

~t] t1r !G~ t !5m̃E
0

t

d t̄e2a~ t2 t̄ !C~ t2 t̄ !G~ t̄ !. ~5!

Here the difference of the timest2t8 is denoted by the sam
letter t. We also taket51 as fixation of the units.

Further, we shall investigate theadiabatic limit, where the
bonds are freezed with respect of the dynamics of sp
@6,13#. Indeed, in a qualitative manner we feel that any sp
glass order is possible only if bonds are frozen. This in
itively obvious fact has been rederived rigorously recen
for spin-glass systems with symmetric bonds@8,13#. Thus
the limit

tJ@t2t8 ~6!

is assumed: The bonds are frozen when the spins are
served. Actually, this assumption is the standard one for
vestigating the dynamics of usual spin-glass models w
the bonds are frozena priori. The different factor of our
approach is the noninfinite temperatureTJ , which is a physi-
cal mechanism for introducing a correlation between bon

Now if t2t8 is large enough, but still is much smalle
thantJ and all these times are much smaller than modulo
the initial time which→2` just afterN→`, we expect that
the correlation function tends to the Edwards-Anderson or
parameter

C~ t2t8°`!5q.

By the adiabatic condition~6! in the last integral of Eq.~4!

we can takee2a t̄;1 by considering the relevant domain o
the integration. In the first integral we have by interchang
variable

m̃E
0

`

d t̄e2a t̄Cp21~ t̄ !C~ t2 t̄ !°
bq2

v
. ~7!
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Similar analysis shows that the right-hand term in Eq.~5!
can be neglected, and we have the simple solution

G~ t !5e2rt . ~8!

There are three relevant parameters in our model:v, b, bJ .
In this model we consider the phase diagram at the follow
conditions: v5TJ , n5T/TJ is fixed, and onlyb51/T is
varying. Thus by

n°0 ~9!

we go to the model that was considered in@9#. @Furthermore,
if the bonds in Eqs.~1,2! are symmetrica priori then by Eqs.
~6,9! we go to the usual spherical mean-field model@13#.
Here n plays the role of ‘‘replica number,’’ which in othe
approaches is introduced by the replica trick.# This fact can
be derived directly from~2!: By limits ~6,9! the bonds can be
considered as uncorrelated, quench, asymmetric Gaus
variables.

After this we have the following equation forC(t):

~] t1r !C~ t !5nb2q21b2E
0

`

d t̄C~ t1 t̄ !e2r t̄ . ~10!

This equation holds fort>0.
Equation~10! can be solved by the Laplace transform

tion. As the general solution we have

C~ t !5
nb2q2r

r 22b2 1k1etAr 22b2
1k2e2tAr 22b2

. ~11!

The constantsk1 , k2 , r should be fixed by the following
standard conditions:C(0)51 ~the spherical constraint!,
] tC(t)u t50521,k150 @the condition for monotonic deca
of C(t)]. After some calculations we have forr and
Edwards-Anderson parameterq

q5
nb2q2r

r 22b2 , ~12!

r 5Ab21
1

~12q!2. ~13!

Finally we have the following equation forq:

q

12q
5nb2q2Ab2~12q!211. ~14!

Besides paramagnetic solutionq50 there is also the first
order phase transition into a spin-glass phase~it is obvious
that second-order transition is impossible in this case!. The
transition point is defined as the first temperature when~14!
predicts a non-zero~non-paramagnet! solution. The tempera
ture and the jumping ofq at this transition point can be
obtained by the following equations:

qc5
c11

3c12
, ~15!
g

ian

-

Tc5
12qc

Ac
, ~16!

wherec is the positive solution of the equation

2c115nc~11c!3/2. ~17!

When n°0 ~in this limit we go to the particular case tha
was studied in Ref.@9#! we haveTc°0,qc°1/3.

Further, we should discuss the stability properties of
spin-glass solution. If detailed balance holds, then st
properties of a system is described by the Gibbs distribut
therefore the stability of solutions can be investigated
analyzing minimums of free energy.~Note: Because the
mean-field dynamical equations are obtained byN→` be-
fore the initial time→2`, some states that arise in dynam
ics cannot be reflected in the purely static investigation
means of free energy. Thus, phase transitions that are
dicted by statics and dynamics can be different@12,14#.! But
for this concrete problem free energy is not necessary:
stability of a solution is reflected by unstable behavior
purely dynamical quantities such as positive derivation
correlation function or negative susceptibility. For examp
the famous~AT! line in usual spin-glass models can be r
covered by this purely dynamical consideration@12,17#. This
property does not connect with any specific character
spin-glass systems but is supported by general theor
about the stability of stochastic dynamical systems~generally
speaking without detailed balance! @1,2,7#. Because in our
case there are no such anomalies both for paramagnet
spin-glass solutions we conclude that these phases are s
~by chosen initial conditions!. The stability of paramagne
for any temperature is more or less typical for first-ord
phase transitions@11,14,13#.

Now about another important problem: If we have tw
different stable phases, then one should be only metast
and another one true stable. In usual models this questio
investigated by free energy: For the true stable phase the
energy should be minimal. In principle, a generalized fr
energy can be introduced also in models without deta
balance; the corresponding quantity is based on the so ca
Kullbak entropy or relative entropy@1,2#. For systems with
non-Gibbsian stationary distribution this function pla
nearly the same role as usual free energy but, gener
speaking, has a strong dependence from initial conditions
the usual case, the detailed balance condition removes
dependence. Unfortunately, we have not succeeded in ca
lation of this function for our model. So really we found on
that the spin-glass phase occurs at least as a metastable
On the other hand all stable spin-glass solutions, known
other models~see, for example,@12,13,18#!, are true stable
with respect to paramagnet at least if temperature is
enough~of course it is not an argument for true stability
our case but rather a hint!. One of the scenarios for phas
transitions realized in such systems is as follows@13,15#: At
some temperature the nontrivial phase~spin-glass in our
case! occurs at the first time, but true thermodynamical tra
sition occurs at some lower temperature where free-ener
of the different solutions are the same. Maybe the scen
for our phase transition is the same.

In the low-temperature limit we have for our solution
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12q;
T2

n
. ~18!

We get this equation by the assumption that 12q is small. It
should be noted that the characteristic time for the corr
tion function relaxation ist rel512q. Thus, critical slowing
down occurs only nearT50.

Now about the origin of this spin-glass phase. As
mentioned above, behavior of a system without detailed
ance can be connected with behavior of the phase spac
the same system when detailed balance holds~i.e., the bonds
are symmetric in our case!. If we assume that such argu
ments can be used, then at this qualitative level the situa
is clear: as was shown in@13# a finiten breaks marginality of
-

l-

no
. P

,
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of

n

the spin-glass solution in the two-spin spherical mod
‘‘Replicon’’ ~or dangerous! eigenvalue is;n ~except ex-
actly the critical point!. Thus, at least, some spin-glass sta
are totally stable, and can ‘‘struggle’’ against the no
Hamiltonian influence.

We consider the spherical spin-glass model with asy
metric partially annealed bonds and show that this last pr
erty can induce a transition to the spin-glass phase. Twovery
important issues in this field should be considered in
future: The problems of proving true stability for the ne
phase, considering partially asymmetric bonds, and,
course, investigating more realistic models.

A. E. Allahverdyan thanks E. Mamasakhlisov for helpf
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